Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PPAR Res ; 2023: 4779199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325367

RESUMO

Background: Type 2 diabetes is characterized by reduced insulin sensitivity, elevated blood metabolites, and reduced mitochondrial metabolism with reduced expression of genes governing metabolism such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). PGC-1α regulates the expression of branched-chain amino acid (BCAA) metabolism, and thus, increased circulating BCAA in diabetics may be partially explained by reduced PGC-1α expression. PGC-1α functions in-part through interactions with peroxisome proliferator-activated receptor ß/δ (PPARß/δ). The present report examined the effects of the PPARß/δ agonism on cell metabolism and related gene/protein expression of cultured myotubes, with a primary emphasis on determining the effects of GW on BCAA disposal and catabolic enzyme expression. Methods: C2C12 myotubes were treated with GW501516 (GW) for up to 24 hours. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Metabolic gene and protein expression were assessed via quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. Media BCAA content was assessed via liquid chromatography-mass spectrometry (LC/MS). Results: GW significantly increased PGC-1α protein expression, mitochondrial content, and mitochondrial function. GW also significantly reduced BCAA content within culture media following 24-hour treatment; however, expression of BCAA catabolic enzymes/transporter was unchanged. Conclusion: These data confirm the ability of GW to increase muscle PGC-1α content and decrease BCAA media content without affecting BCAA catabolic enzymes/transporter. These findings suggest heightened BCAA uptake (and possibly metabolism) may occur without substantial changes in the protein levels of related cell machinery.

2.
Mol Cell Endocrinol ; 559: 111800, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270542

RESUMO

PURPOSE: Type 2 diabetes is characterized by reduced insulin sensitivity which correlates with increased circulating BCAA. These experiments investigated the effects of insulin resistance with and without excess BCAA on myotube insulin sensitivity and L-type amino acid transporter-1 (LAT1). METHODS: C2C12 myotubes were treated with or without excess BCAA for 1 or 6 days, both with and without insulin resistance. Western blot was used to assess insulin sensitivity and LAT1 content. Liquid chromatography-mass spectrometry was used to evaluate BCAA media content. RESULTS: Insulin resistance was associated with significantly increased extracellular BCAA accumulation independent of LAT1 content. Conversely, prior BCAA treatment was not associated with extracellular BCAA accumulation regardless of level of insulin sensitivity. CONCLUSION: These data suggest insulin resistance, but not BCAA treatment, promotes extracellular BCAA accumulation independent of changes in LAT1 content, implicating insulin resistance as a causal agent of extracellular BCAA accumulation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Aminoácidos de Cadeia Ramificada/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...